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A SUBCRITICAL PLUTONIUM-FUELED
FAST REACTOR CORE
(ZPR-III* Assembly 37)

by

P. I. Amundson, R. Jiacoletti,
J. K. Long, and R. L. McVean

ABSTRACT

A subcritical fast reactor, fueled with plutonium, is
described. Calculations and experimental measurements of
neutron flux and gamma dose rates near the bare core face
are reported, as well as the core temperature increase due
to plutonium alpha and gamma heating.

I. INTRODUCTION

ZPR-III Assembly 37, a subcritical plutonium-fueled fast reactor,
was constructed to measure several parameters of the core that would
materially help in writing a hazards analysis for future plutonium critical
loadings in ZPR-III. The assembly design was based on the fuel and diluent
ratios of Assembly 2(9) and is anticipated to be similar to one of the initial
critical plutonium assemblies that will be run in the future.

Neutron flux and gamma dose rates were measured near the face
of this assembly. Temperature measurements were made periodically
at 36 points within the assembly, so that both axial and radial temperature
distributions as well as temperature rise in the core due to alpha heating
from the plutonium fuel could be determined. The maximum temperature
rise in the core was determined by insulating the front face of the assembly
with 3 in. of Fiberglas insulation and measuring the core saturation
temperatures.

Approximate calculations were made for gamma dose rate and
neutron flux between the assembly halves and compared with experimental
results.

*A detailed description of ZPR-III can be found in Ref. 1.
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II. DESCRIPTION OF ASSEMBLY 37

Assembly 37 was constructed entirely in one half of the bisectional
ZPR-III reactor. This assembly duplicates approximately half of a critical
system, and allows easy extrapolation of measurements to the full assembly
with each half containing an equal part of the critical mass. The cylindrical
core was partially blanketed with full-density depleted uranium. Several
physical parameters of this core are given in Table I.

Table I

PHYSICAL PARAMETERS OF CORE

Mass of Plutonium (kg) 20.05
Plutonium Analysis (%) Pu?¥? 95
Pu?¥ 4.5
Pu?%! 0.5
Core Length (in.) 8
(cm) 20.3
Core Radius (in.) 7.68
) 19.5

Core Volume Fractions

Plutonium 8.0a
Depleted Uranium 05155
Stainless Steel 0] %
Aluminum 0.31

The material densities in grn/cm3 used to calculate the core volume
fractions were as follows: plutonium, 19.06; depleted uranium, 19; stainless
steel, 7.85, and aluminum, 2.7.

Each core drawer contained two - -in. columns of plutonium, 3
columns of depleted uranium, and 11 columns of aluminum. The 11 columns
of aluminum were divided into 6 columns of 63%-aluminum and 5 columns of
45%-aluminum. The material arrangement for the standard core drawer is
shown in Fig. 1. A face view of the assembly is shown in Hig a2,
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Fig. 2. Face View of Assembly 37

III. LOADING OF ASSEMBLY

Although the effective k of this assembly was expected to be between
0.3 and 0.5, it was loaded in a manner similar to the procedure usually
followed in constructing a critical assembly. A plot of inverse count rate
vs. mass of plutonium in the assembly at the time is given in Fig. 3. As
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loading proceeded, the subcritical multiplication curve was checked to
insure that the effective k for the full assembly would not be far greater
than that anticipated.

Fig. 3

by
FS
I

Subcritical Multiplication Curves:
Reciprocal Count Rate Vs. Mass
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Rigorous safety practices were followed during the loading of this
assembly. Before the plutonium plates were loaded into the core drawers,
the former were first checked for alpha contamination in an internal flow
counter and transferred to a hood for insertion into the core drawers. En-
trance to the reactor room and loading room was limited to personnel
associated with the assembly, and then only to those wearing protective
clothing. Prior to daily operation, the reactor and loading rooms were
completely surveyed for alpha-emitting contamination. At all times during
the operation of this assembly the assembly room was monitored with a
stepwise air monitor with an annular-impactor-type collector.

IV. MEASUREMENTS OF GAMMA DOSE RATE

In order to help establish the magnitude of the gamma dose rates
expected while loading a plutonium critical assembly, measurements of
the gamma dose rate between the assembly halves were made at several
points along the axial midline of the assembly. Since a knowledge of gamma
intensities is primarily a health problem, health-physics instruments were
used to make the measurements. The gamma survey meters used were of
the ion chamber variety, commonly called the Juno. These instruments
have a rectangular air-ionization chamber with movable shutters on the
lower face designed to permit 3 different types of measurements: alpha +
beta + gamma readings, beta + gamma readings, or gamma readings alone.
The instruments can be calibrated only in dose rate units for gamma ra-
diation, but if large amounts of low-energy gamma radiation should possibly
be present near this assembly, the beta-gamma and alpha-beta-gamma
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readings are then an indication of the existence of this large low-energy
component of gamma radiation.

Measurements were taken with the shutters in all positions with the
fully loaded core and also with the plutonium removed; thus the beta-and-
gamma component due to the massive blanket of depleted uranium and also
the contribution from the depleted uranium in the core could be subtracted
from the total readings.

The beta background dose rate, as read on the meters, rose from
approximately 13 near the core center to 25 mr/hr at 29 in. from the core.
This trend was expected, since the bulk of the beta radiation emanates from
the massive blanket regions which surround the core. The term mr/hr
here is strictly an instrument reading, not a measured dose rate for beta
radiation. The Juno survey meters were calibrated with a radium gamma
source presumed to be within + 10% of this calibration down to approxi-
mately 80 kev, below which the gamma efficiency falls off rather rapidly.

Gamma measurements were also made with dental-type X-ray films,
calibrated both with radium gamma radiation and a 50-kvp X-ray machine.
The films were placed at various radii on the core interface and also at a
distance of 29 in. from the core interface. Since the film sensitivity varies
considerably between the 2 energy calibrations, and since the effective
gamma energy emitted from this core is probably somewhere between these
2 energies, little can be said of the measured dose rates using these films.
It is expected that the average energy of gamma rays emitted from this
assembly will be in the region of 60-80 kev; therefore, one would assume
that the radium gamma calibration is more realistic than the X-ray
calibration.

The results of the gamma measurements are given in Table II.

Table IT
MEASUREMENTS OF GAMMA DOSE RATE

X-ray Film
Distance from
Core (in.) Radium 50 kvp
(measured to Radiation Admitted Juno Reading Calibration Calibration
front of detector) into lon Chamber (mr/hr) (mr/hr) (mrlhr)

66 260 2

0 %
By 69
aBy n
3 y a2
By 3
afy w“
6 y 2
By 3
aBy 3
12 y 16
By 18
aBy 21
20 y 9
By 11
aBy 12

29 y 6 7 05
B 6
aby 6
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10

If the average gamma-ray energy is in the region of 60-80 kev, as
expected, the 12-20- and 29-in. Juno readings will probably be low, but
should not be in error by more than 30%. Measurements taken closer in
should be more in error due to the larger component of oblique radiation
absorbed by the thicker side walls of the ion chamber. The surface Juno
and X-ray readings are not comparable, since the X-ray films were taped
directly to the core face while the Juno readings were made with the in-
strument touching the face, resulting in an effective ionization chamber
center approximately 2 in. away from the core interface. In all cases
with the Juno survey meter, the effective distance between core interface
and ionization chamber center should be taken as the measured distance
plusIERT

All measurements have been corrected for background radiation
(mostly beta) emitted from the depleted uranium in the assembly. Back-
ground measurements were made with the entire core intact, except for
the plutonium fuel.

Figure 4 shows a plot of the gamma dose rate vs. distance from the
core face as measured with the Juno survey meter and also the calculated
falloff of dose rate from a plane circular disk positioned at the core
interface.

O—0—0 CALCULATED CURVE
20— ~—=— MEASURED WITH JUNO METER

DOSE RATE, mr/hr

el o ARG 5 S A [ [ BN

ey e T IR Ny T TR {
EFFECTIVE DISTANCE FROM CORE SURFACE, in.
(includes 1.5-in correction)

Fig. 4. Gamma Dose Rate along
Axial Midline
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V. NEUTRON-FLUX MEASUREMENTS

The fast neutron flux was measured with 3 different types of neutron
detectors at a point midway between the 2 assembly halves (29 in. from the
core interface). Measurements were made first with a lithium iodide crys-
tal surrounded by polyethylene spheres of varying diameters. Bonner(2)
indicates that an average neutron energy as well as total neutron flux can
be measured with this instrument.

The second type of detector used was an RCL fast-neutron survey
meter. This survey meter uses a methane-filled, polyethylene-lined
proportional counter whose response is such that the number of counts
produced is approximately proportional to the first collision depth dose
for neutrons between 0.2 and 10 Mev.(3) Although this detector was not
designed to measure neutron flux, a reasonable approximation can be made
if one corrects the count rate for the rather well-known energy dependence
of this counter. This correction, of course, depends on a knowledge of the
average neutron energy.

The third type of detector used was a Hanson-Long Counter. This
counter was designed specifically to measure neutron flux, and its efficiency
is essentially constant between approximately 10 kev and several Mev.(4)

Blockdiagrams of these systems can be found in Fig. 5.
y
i AMPLIFIER
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The neutron flux was also measured at a point roughtly 4 in. from
the core interface on the core cylindrical axis with the RCL fast-neutron
survey meter. Positioning problems and finite detector volumes limit
the accuracy of this measurement by the estimate of distance from the
core interface to the effective detector center. The results of these
measurements corrected for background are given in Table III. The re-
sults of the lithium iodide measurements are not given because of cali-
bration uncertainties.

Table III

NEUTRON FLUX MEASUREMENTS

Reading
Distance from Core Face Instrument (nf/cmz—sec)
29 in. Modified "Hanson 70
(midway between halves) and Long Counter"
29i4n. RCL Fast Neutron 60%*
Survey Meter
Instrument at Contact RCL Fast Neutron 171

(effective distance = 4 in.) Survey Meter

*¥Assuming an average neutron energy of 400 kev (estimated from
lithium iodide measurements).

The actual flux at 29 in. is more nearly 90 nf/cm?‘-sec due to a
30% contribution from leakage from the startup source cask and spon-
taneous fission of U?*® in the massive depleted-uranium blanket. All
measurements were made with the sources in their respective source
casks.

An attempt was made to measure the surface neutron flux with
Eastman Kodak neutron-monitoring film. The results of these measure-
ments are not reported since it is believed that the very large component
of low-energy neutrons (< 300 kev) in the spectrum may go undetected in
the routine scanning of these neutron films.

VI. MEASUREMENTS OF CORE TEMPERATURE

Temperature distributions in both space and time were measured
in Assembly 37 as an aid in predicting the temperature rise and spatial
temperature distributions of full-sized plutonium assemblies. Tempera-
tures were measured with iron-constantan thermocouples placed at
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36 points within the assembly. The thermocouple potentials were measured
with a Leeds and Northrup.type K-2 potentiometer and light beam galvan-
ometer. A block diagram of the measuring circuit can be found in Fig. 6.
The thermocouple Type IC calibration is shown in 17510 /o
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Fig. 6. Temperature-measuring Circuit
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The thermocouples were placed in the assembly so that a 3-point
axial distribution at several different radii could be generated. Thermo-
couples also touched different materials to obtain a qualitative, general
idea of thermal contact between pieces in the assembly. Several thermo-
couples were placed in channels formed by the curved edge of 4 adjacent
matrix tubes; others were placed touching the lower edge of depleted
uranium, plutonium cans, and aluminum pieces. To obtain the maximum
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core temperature, 3 thermocouples were placed touching the center of the
sides of the plutonium fuel cans in a central drawer. The specific positions
of thermocouples are shown in Fig. 8, 9 and 10. All 36 thermocouples
were read several times each day so that the time dependence of temper-
ature could be analyzed. After the bare-face-core saturation temperature
had been reached, a 3-in.-thick blanket of Fiberglas insulation was placed
over the bare core face, and temperatures were again measured vs. time
until a new saturation temperature was reached. If heat loss through the
Fiberglas insulation can be ignored, this saturation temperature will be
the same as that temperature reached with the halves together, each con-
taining 20 kg of plutonium in this type of configuration.

Front View Side View
12345 678 91011121314151617 181920 21 22 23 24 25 26 27 28 29 30 31

N<XsSs<c—unIO0OTO0OZTZIrA—-“—ITOoTMoO®x

Fig. 8. Thermocouple Positions in the Core
(Scallc T Hn =)
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Figures 11, 12 and 13 show the radial temperature distributions at
various axial positions for thermocouples located in the matrix with no in-
sulation against the face of the core, for thermocouples located in the
matrix with insulation against the face of the core, and for those touching
the bottom edge of plutonium cans with insulation against the core face.

O THERMOCOUPLES AT CORE FACE
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Fig. 11. Temperature Vs. Radial Position with

TEMPERATURE,’C

no Insulation against Face (From data
16:00 - 12 July 61).
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Temperature Vs, Radial Position with Insulation
against the Core Face - Thermocouples Touching
Pu Cans. (From data 15:45 - 17 July 61).
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Figures 14 and 15 show the axial temperature distributions without
insulation against the core face and with insulation against the core face.
It will be noted that the maximum temperature occurred at a point 4 in. into
the assembly with no insulation against the core face. With insulation against
the core face the maximum temperature occurred at the core interface. The
8-in. point on the second curve from the top of Fig. 15 is probably high.
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Fig. 14. Temperature Vs, Axial Position with no Insulation against Face
(From data 16:00 - 12 July 61).
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Fig. 15. Temperature Vs. Axial Position with Insulation against Face at
Saturation Time (From data 15:45 - 17 July 61).
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In general, temperatures of thermocouples touching both depleted
uranium and aluminum pieces showed temperatures equal to those thermo-
couples touching plutonium fuel cans in the same area. This, in conjunction
with equal temperatures of thermocouples touching plutonium pieces and
thermocouples inserted in slots between matrix tubes, indicates that the
general thermal contact within the core was quite good.

Figure 16 shows the temperature rise of the core vs. time for several
positions within the core. The room-temperature distribution vs. time is
also given to help explain some of the core-temperature deviations. It should
be noted that the reactor room temperature had rather drastic daily temper-
ature cycles as well as large average room-temperature fluctuations over a
5-day interval. Since the assembly was rather massive, it was thought that
the deviations of core temperature from a smooth rise occurred because of the
slowaverage room-temperature oscillations. It appears that if the frequency
and amplitude of the average room-temperature oscillations are constant,
approximately 24 hr exist between room-temperature peaks and correspond-
ing peaks measured by thermocouples near the center of the core. The max-
imum temperature reached with no insulation against the core face was
39.5°C at the radial center and 4 in. into the core. This temperature occurred
128 hr after core assembly. The highest temperature (43.6°C) recorded
with insulation against the core face occurred at the radial core center and
at the core interface 222 hr after core assembly.

48
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Fig. 16. Core Temperature Vs. Time
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VII. ESTIMATE OF NEUTRON FLUX LEAKING FROM
FRONT FACE OF ASSEMBLY

The effective k (reactivity) of this assembly was calculated by means
of multigroup transport theory. The problem, run on an IBM 704 computer,
used the l1l-group cross-section set (Set 58)(10) and the two-dimensional
transport theory code for a finite cylinder (TDC code).(ll)

The solution to the problem indicated an effective k of 0.49, resulting
in a multiplication of approximately 2.0. The pointwise neutron flux, total
transport cross sections, and total leakage printouts were used to calculate
the amount of leakage through the face of the reactor both for the core area
and the blanket area at the open face. The results given in Table IV show
that the bulk of the neutron leakage from this reactor comes out of the core
face.

Table IV

CALCULATION OF NEUTRON FLUX BETWEEN ASSEMBLY HALVES

Source Strength = 20 kg x 6.2 x 10* n/sec—kg(Pu) = 1.24x10%n/sec

Calculated Leakage = 9.998 x 105n/sec, fromprintoutnormalized to
real source

Fractional Open Face
Leakage = 0.96 from calculation of gradients

Front Face Leakage S = (O, 3her 2= CLEIER pn 105n/sec = Ghislle 105n/sec
Flux at 29 in. (73.66 cm) along axial midline:

25¢ 1 (m8itad)

= — = 2_
(0] 1B n . 29 n/cm sec

where r = 19.5 cm = core radius
A = 1.1x 10> cm?® = area of face (circular disk)

a = 73.66 cm

The midline flux equidistant between the reactor halves was calcu-
lated by assuming that the reactor leakage can be represented by an iso-
tropic disk source of unit source strength S¢ and radius r, where S¢ is
equal to twice the total leakage from the core face. The neutron flux at
a point along the core axial midline and 29 in. (73.66 cm) away will be

i a2

¢ = S¢/4 g
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The results of this calculation (shown in Table IV) indicate a flux approxi-
mately equal to half of the flux measured experimentally at this point. The
large discrepancy between the experimental measurements and the calcu-
lated flux could exist in (1) the inability of the preceding calculation to
predict accurately the neutron leakage, or (2) the contribution from multi-
plication of startup source neutrons (sources in shielded casks) as well as
environmental scattering coupled with the nondirectional characteristics of
the specific counters used in measuring the centerline flux.

VIII. ESTIMATE OF GAMMA DOSE RATES

Gamma-ray dose rates at several points along the core axial mid-
line have been approximated. Roesch(8) has calculated the surface dose
rates of large pieces of pure isotopes of plutonium and their significant
decay products. The surface dose rates (absorbed dose) for the important
isotopes are listed in Table V for an isotope mixture initially containing
95% plutonium-239, 4.5% plutonium-240, 0.5% americium-241, and 0.5%
uranium-237. The T, column represents the surface dose rates 4 months

after the above analysis date and T, represents the dose rates after 2 years.

The plutonium fuel surface dose rates (Dp) are represented by column T,
at the time the experiment was conducted. Column T, is presented for
comparison only.

Table V
SURFACE DOSE RATES FOR PLUTONIUM FUEL

Rad/hr-unit Surface Area

Fuel Pure Isotope(s)
Isotope Component Fraction Dose Rate T, T
Pu?®? X-rays 0.95 0.61 0.5795 0.5795
hard 095 0.056 0.0532 0.0532
Ba X-rays 0.045 14 0.630 0.630
hard 0.045 (0] 5177 0.0167 0.0167
(fission product hard 0.045 0.25 0.0113 0.0113
equilibrium)
Am?#! X-rays 0.005 (237x4.28x 107 %)* 0.072 0.432
hard 0.005 (221x4.28x10'4t)* 0.068 0.408
237 hard 0.005 (23 x [1-e0-102t]) 0.115 0.115
Plutonium Fuel X-rays 1,282 1.642
hard 0.264 0.604
Total 1.546 2.246

*t in days; for times much less than 14 yrs.

2]



oA

Lo d basnsastgay 918 (g

10l bashiase vy 2t (¥ rcbiod

A

& s

S

s &3] ATy ‘g

CAEVT MUIVOTULY 201 SATAN JeO0 IOATEUS -

g B : <
el TR diny < b :

S (Blagotoal aund lawa
o {T 5 iaFs S ekt T celisert-.
- :

‘ZekEn Potel i35,
Setoa gieme Ceeu.0 e

GEaid o0 o 21 e
PRG540 $aifo 50 b 20

&M #I0.06 5.0 00

SER.D ah0, 4
8080 5a0.0

8L 2LED b | #ES) 2000
S 1 851
2040 PS8
WS .= arad. i



22

The above analysis was based on the high absorption properties of
plutonium for the low-energy gamma rays emitted. If we are willing to
assume that this homogenized core is also highly absorbing (a reasonable
assumption for 20-kev X-rays), the core unit surface dose rate becomes

D, A 0.30
D¢ - o 2.246 XT?,(; = 0.1436 rad/hr-cm2 core area
AC ’

)

where Af/Ac is the fractional area of the core face occupied by plutonium
fuel.

Since the surface dose rate is due mostly to gamma rays emitted
very near the core face, the flux distribution will be nearly that of circular
disk source. Therefore, the axial midline dose rate at any distance a for
a core of radius r can be represented by

D, 2 2
D, = T r’ t+a® ;
4 a2

1D}, =.2Df

where

At a point midway between the ZPR -III assembly halves (73.66 cm), the
dose rate will be

R4 68 mrad/hr or 5 mr /hr

A plot of the dose rates along the exterior core axial midline, as
approximated by this method, is given in Fig. 4. The calculated results
are in good agreement with experimental measurements at core -detector
distances for which the Juno survey meters were considered adequate

(>12 in.).

IX. TEMPERATURE CALCULATIONS

One purpose in constructing Assembly 37 was to collect informa -
tion on temperature distributions and peak saturation temperatures in the
core that could be used to predict temperatures that may exist in future

plutonium cores.

Since ZPR-III is constructed of a large number of horizontal matrix
tubes into which are inserted a variety of different materials, it was an-
ticipated that the axial and radial conductivities may differ by an order of

magnitude.
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The measured axial and radial temperature distributions were fitted
to parabolic functions from which thermal conductivities were calculated.
These conductivities were used in conjunction with the generalized heat
conduction code, GHT, 12) to calculate temperature distributions. This code
solves steady-state and/or transient heat conduction problems in 3-
dimensional geometry. The method used in GHT is numerical integration
of the appropriate finite -difference equations. For a steady-state problem,
the required input data for each nodal point is the heat generation Q and the
thermal conductances K. In order to calculate the conductances from the
thermal conductivities obtained from the experimental temperature distri-
bution, the neutron-diffusion theory code CURE(13) was used. This is a
generalized 2-space -dimension multigroup coding for the IBM 704, which
can calculate the GHT input values for X-Y, R-Z, or R-6 geometry.

It was difficult to calculate exact conductivities from the experi-
mental temperature distributions since the points fit parabolic functions
only approximately. Therefore, some alteration of the CURE input data
was required before the GHT code would calculate a temperature distri-
bution that would approximate the experimental distribution. The results
of this calculation along with a comparison of central calculated and expern-
imental temperatures are given in Table VI. A comparison of calculated
and experimental temperature distributions can be found in Figs.17 and 18.

Table VI

CORE THERMODYNAMIC CONSTANTS AND PEAK TEMPERATURES

Radial Conductivity (Core) 0.031 %(—: = 0.00154 ﬁ
Axial Conductivity (Core) 0.2 %:-%: 0.00992560_%1_06
Radial Conductivity (Blanket) 0.05 mf%"c = 0.00248 sec-—:nl-“E
Axial Conductivity (Blanket) 0.5 ﬁ%ﬁ: = 0.0248 ﬁ-—%
Calculated Peak Saturation

Temperature (42.8°C) - (109°F)

Experimental Peak
Saturation Temperature (43.6°C) - (110°F)
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Since matrix tube boundaries
and thermal contact of pieces making up
the core are probably the limiting factor
in the heat flow out of the reactor, it is
thought that the conductance values for
future planned reactors will not deviate
far from the conductivities measured
for this core. Use of the conductivities
given in Table VI to calculate peak
saturation temperatures for future metal
assemblies should prove reasonably
accurate.

The temperature distributions
from these calculations do not match
the experimental distributions with any
degree of accuracy. Although the reason

for this is not completely clear, it may lie in the large difference between

axial and radial conductivities.
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